

Features:

- With this flat design, the construction is more easy. A twin-rod cylinder can be assembling at the low cost.Le The choice of fixing is large and give more solution to integrate the cylinder in the mechanical part.
- The flat oval design matching piston shape prevents norotating rod (self guidance). This technology come from ISO oval cylinders.
- Piston as standard goes automatically with magnet from size 10 to 25 .

Options

- Hole-rod (X) with cylinders double end rod (10-16-25)

A-A

Model		MCMOB		
Acting type		Double acting / Single acting		
Tube I.D. (mm)		10	16	25
Port size Rc(PT)		$\mathrm{M} 5 \times 0.8$		
Medium		Filter air $50 \mu \mathrm{~m}$ lubricated or not		
Operating pressure $\mathrm{kgf} / \mathrm{cm}^{2}$	Double acting	1.5~10	1.2~10	1~10
	Single Push	2.0~10	2.3~10	1.5~10
	acting Pull	3~10	2.5~10	2~10
Work temperature		$-10 \sim 60{ }^{\circ} \mathrm{C}$ (No freezing)		
Stocking temperature		$0 \sim 15{ }^{\circ} \mathrm{C}$		
Tolerance of stoke		1.5 mm		
Cushioning of end stroke		Elastic by polyurethan internal stop built into piston		
Speed	$\mathrm{m} / \mathrm{sec}$	0.6		0.7
Non-rotating accruacy		$\pm 3.5^{\circ}$	$\pm 2.5^{\circ}$	
Minimum stroke with sensor		5		
Pneumatic cushioning		No		
Sensor switch		RCS		
Sensor switch holder		BK-81		

Material

Oval tube	Stainless steel
End cover	Anodized aluminium
Piston rod	Stainless steel
Piston	Composit polyurethan
Piston rod bearing	Bronge \& PTFE
Seals	Polyurethan
Spring	Bronge \& PTFE
Magnet	Ferrite
Spacer spring	Brass \& Acetal resin

Forces for oval cylinder
(unit:kg)

Tube I.D.	Rod ϕ	Function		Area mm ${ }^{2}$	Pressure $\mathrm{kgf} / \mathrm{cm}^{2}$						
				2	3	4	5	6	7		
10	4	$\xrightarrow{\square+4}$	Push		100	1.25	2.37	3.63	4.12	5	6.12
		$\xrightarrow{N /{ }^{2}}$	Pull	88	0.91	1.79	2.67	3.55	4.43	5.31	
		7	Double Push	100	2.00	3.00	4.00	5.00	6.00	7.00	
			action Pull	88	1.76	2.64	3.52	4.40	5.28	6.16	
16	6	$\stackrel{\square}{\square+4}$	Push	200	3.50	5.00	7.40	8.20	9.10	12.00	
		$\xrightarrow{N+}$	Pull	173	1.51	3.25	4.95	6.75	8.45	10.15	
		$\xrightarrow{\square}$	Double Push	200	4.00	6.00	8.00	10.00	12.00	14.00	
		$\xrightarrow{\square}$	action Pull	173	3.46	5.20	6.90	8.70	10.40	12.10	
25	10	$\xrightarrow{\square+4}$	Push	430	6.40	11.70	16.20	21.50	26.30	31.20	
		$\xrightarrow{M \sqrt{2}}$	Pull	352	3.52	4.14	7.66	11.18	14.70	18.22	
		止	Double Push	430	8.60	12.90	17.20	21.50	25.80	30.10	
		$\xrightarrow{4 \square}$	action Pull	352	7.04	10.56	14.08	17.60	21.12	24.64	

Storkes

Function Tube I.D.	$\square \sqrt{4}=\frac{\square}{4}$		$\xrightarrow{\square+}$	$\xrightarrow{N / F}$		
10	$5,10,15,20,25,30,40,50,80,100$	25,50, 80, 100	10, 25, 50	10, 25, 50	25, 50	10, 25, 50
16	$\begin{aligned} & 5,10,15,20,25,30,40,50,80 \\ & 100,160,200 \end{aligned}$	$\begin{aligned} & 25,50,80,100, \\ & 160 \end{aligned}$	10, 25, 50	10, 25, 50	25, 50	10, 25, 50
25	$\begin{aligned} & 5,10,15,20,25,30,40,50,80 \\ & 100,160,200,300,400,500,650 \end{aligned}$	$\begin{aligned} & 25,50,80,100, \\ & 160,200 \end{aligned}$	10, 25, 50	10, 25, 50	25, 50	10, 25, 50

[^0]

Single action rod extended

Code	LA $_{-0}^{+1.5}$				LB2 $_{-0}^{+1.5}$				LC $_{-0}^{+1.5}$			
Tube 1.D.	10	25	50	10	25	50	10	25	50	10	25	50
10	94	124	174	54.2	84.2	134.2	77	107	157	29	44	69
16	109	139	189	63	93	143	87	117	167	32	47	72
25	143	173	223	76	106	156	111.5	141.5	191.5	41.5	56.5	81.5

$\begin{array}{cc} \text { Code } \\ \text { Tube I.D. } \end{array}$	$\underset{\substack{+1.5 \\+0 \\ \hline \\ \hline}}{ }$	AY	B	B1	$\begin{gathered} \text { B2 } \\ +1.5 \\ +0 \end{gathered}$	B3	C +1.5 +0	D	DA	F	G	H	J	K
10	74	7	22	18.3	33	2.5	69	16	10.3	M3 depth:5	6.5 depth:3.5	3.2	2	$\mathrm{M} 4 \times 0.7$
16	89	10	24	19	43	5	81	19	14.3	M3 depth:6	8.2 depth:4.5	4.2	3	$\mathrm{M} 6 \times 1.0$
25	123	17	35.5	28	56	8	111	28	22.5	M4 depth:10	11 depth:6.5	6.5	5	$\mathrm{M} 10 \times 1.25$

Code Tube I.D.	\mathbf{L}	\mathbf{M}	$\mathbf{M 1}$	\mathbf{N}	$\mathbf{N} 1$	\mathbf{P} +0 -0.05	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{V}	\mathbf{W}	\mathbf{X}
$\mathbf{1 0}$	M3 depth:5	20	12	15	7	10	1	9	19	12	4	-	12
$\mathbf{1 6}$	M3 depth: 6	25	16	18	10	14	1	12	22	16	6	5	16
$\mathbf{2 5}$	M4 depth:10	36	24	28	16	20	1.5	16	31.5	22	10	9	24

Double acting double end hole-rod

Single acting double end hole-rod

A-A

Code Tube I.D.	\mathbf{A} +0.15 +0
10	1
16	1.2
25	3.2

Yconnector

Code Tube I.D.	CA	CB	CE	CF	CH	CL	CM	KK
8	8	4	11	4	8	16	21	M4
10	8	4	11	4	8	16	21	M4
12	12	6	16	6	12	24	31	M6
16	12	6	16	6	12	24	31	M6
20	16	8	22	8	16	32	42	M8
25	20	10	26	10	20	40	52	M10 1.25

Female rod ends

Order example	Code Tube I.D.	KK	RA	RB	RC	RD	RE	RG	RK	RL	RM	RU
PHS 4	8,10	M4	18	8	6	5	7.7	10	11	27	36	9
PHS 6	12,16	M6	18	9	7	6	8.95	14	12	30	39	10
PHS 8	20	M8	22	12	9	8	10.4	17	16	36	47	13
PHS 10	25	M10 1.25	28	14	9	10	12.9	20	19	43	56	17

[^0]: Note: Special strokes are available on request

